绝对收敛是什么意思(判断条件)
来源:网络时间:2025-01-05 22:00:01
摘要:绝对收敛是什么意思(判断条件)
一、绝对收敛的定义
在数学中,绝对收敛是针对无穷级数和广义积分而言的。对于无穷级数,如果级数各项的绝对值所构成的级数收敛,即部分和有极限,就称级数是绝对收敛的。对于广义积分,若函数在任何有限区间上可积,且无穷限积分收敛,则称绝对收敛。
二、绝对收敛的性质
绝对收敛级数一定收敛,并且绝对收敛级数具有重排不变性,即无论怎样重新排列级数的项,其和都是相同的。这是因为绝对收敛级数的项的绝对值之和是有限的,所以级数的项可以任意排列,其和仍然不变。此外,绝对收敛的级数通常具有更好的性质,例如可以交换求和顺序,可以与其它绝对收敛的级数相乘等。
三、绝对收敛的判断条件
1. 比较判别法:如果存在一个已知收敛的正项级数,使得对于所有的,都有,其中是要判断的级数,那么绝对收敛。
2. 比值判别法(D'Alembert判别法):如果级数的项满足,那么绝对收敛。
3. 根式判别法:设为正项级数,且存在某正整数及正常数,若对一切,不等式成立,则级数收敛;若对一切,不等式成立,则级数发散。
4. 积分判别法:如果函数在区间上非负且单调递减,且收敛,那么绝对收敛。
四、绝对收敛与条件收敛的区别
条件收敛是指级数收敛,但其绝对值级数发散。绝对收敛和条件收敛的区别主要体现在以下几个方面:一是收敛性上,绝对收敛的级数一定是条件收敛的,但条件收敛的级数不一定是绝对收敛的;二是重排性质上,绝对收敛的级数重排后所得的级数也绝对收敛,且有相同的和数,而条件收敛级数重排后所得的新级数,即使收敛,也不一定收敛于原来的和数;三是在性质上,绝对收敛的级数通常具有更好的性质,如可交换求和顺序、可与其它绝对收敛的级数相乘等,而条件收敛的级数则不具备这些性质。
- 热门推荐
- 考研最容易的公共卫生专业(公共卫生研究生好考吗)12-31
- 大专毕业可以去国外留学吗(大专不想读了出国可以吗)01-04
- 无锡城市职业技术学院怎么样(无锡前十名职高学校)01-02
- 2025江苏高考本科分数线(江苏550分能上一本吗)01-05
- 化学专业排名(化学考研学校排名)01-04
- 天气变化无常(天气变幻莫测唯美句子)01-03
- 考研英语能蒙到30分吗(考研英语二35分全靠蒙可以吗)12-31
- 考研调剂是自己选还是学校定(考研调剂的注意事项)12-31
- 考研英语难度变化(近二十年英语二难度排序)01-01
- 河南专升本需要考些什么科目(河南专升本考试分数线)01-02
